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Abstract 

A new, least-squares optimization method with interpolation is devised to fit skeletal vibra- 
tional heat capacities to the two parameters 691 and | in the Tarasov function used for heat ca- 
pacity calculations of linear maeromoleeules. When heat capacities are available in the proper 
temperature range, | and | can be determined uniquely in a single computer run. Appended 
to our Advanced THermal Analysis System (ATHAS), this new method offers an improvement 
in analyzing heat capacity data and facilitates the systematic study of the physical significance of 
| and | values for all polymers and related molecules of the ATHAS data bank. 
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Introduction 

Heat capacities of macromolecules in the solid state have been characterized 
in a variety of ways. One of the most widely used approximate method is the 
Tarasov analysis. In this approach, a combination of one- and three-dimensional 
Debye functions is chosen to model the skeletal heat capacities of linear mole- 
cules and to compute their temperature dependence [1]. Incorporating the Tara- 
sov approach, the Advanced THermal Analysis System (ATHAS) has been 
developed in our laboratory for the evaluation of the thermal properties of linear 
macromolecules and related compounds, and to maintain a critically evaluated 
data bank [2]. As a result of these efforts, detailed thermodynamic information 
exists now for over 200 linear macromolecules and related small molecules. 
The ATHAS permits to link the macroscopic heat capacities to their micro- 
scopic cause. At low temperature, this cause is practically exclusively vibra- 
tional motion. As the temperature increases, large-amplitude motion may 
become possible, usually in the form of conformational motion (internal rota- 
tion) and, for small molecules, also rotation and translation. Often, this large- 
amplitude motion begins at a well-defined phase transition (melting, glass 
transition, or disordering transition). Recently, it could be shown, however, that 
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more complicated molecules, particularly those which display mesophases, may 
also gradually gain large-amplitude mobility at temperatures far below the dis- 
ordering transitions [3]. To identify such gradual gain of large-amplitude mo- 
tion, one compares the measured heat capacity with the heat capacity expected 
for vibrations-only and makes a general accounting of the changes in entropy 
found and expected for various types of mobility and disorder. 

Experimental Cp Skeletal I 

represented [ 

tables 0 
compiled 

from IR and 
Raman data I Compu d Cp 

Fig. 1 Schematic of the ATHAS for solids, leading on the basis of experimental heat capaci- 
ties over a limited temperature range to computed full range data. The method is 
based on fitting to an approximate vibration spectrum 

To achieve a full characterization, the measured low-temperature heat ca- 
pacities are first fitted to approximate vibration spectra in the sequence shown 
in the left half of Fig. 1 and described in detail below. Then, the vibrational heat 
capacities are calculated fQr the higher temperature range, using the low-tem- 
perature-fitted skeletal and group vibration spectrum. Figures 2 and 3 show, for 
example, the deviations of the measured heat capacities of glassy and crystalline 
polyethylene from the heat capacities expected from vibrations only (shaded ar- 
eas) [4, 5]. Both experimental data sets were obtained by extrapolation of 
partial crystallinity to the amorphous and crystalline states, respectively [6]. 
The increase in experimental heat capacity could be linked to the beginning of 
local gauche-trans mobility in this temperature region. In glassy polyethylene 
it begins already at about 120 K, while in crystalline polyethylene it begins at 
about 275 K. The deviations of the heat capacity from the vibrational Cp were 
already observed in 1963 and were the reason for the development of ATHAS 
[7]. For the crystalline polyethylene the trans-gauche conversions could be 
documented also by IR analyses, and by molecular dynamics simulation [8, 9]. 

The Debye functions contained in the Tarasov function are, however, not 
available in closed forms, an inversion of heat capacities to the approximate vi- 
bration spectrum can, thus, only be done by trial and error [ 10]. The technique 
to extract the parameters for the Tarasov equation from experimental data is 
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Fig. 2 Experimental Cp of amorphous polyethylene, compared to the vibration-only, com- 
puted Cp. Shaded area indicates the Cp-contribution of large-amplitude motion 
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Fig. 3 Experimental Cp of crystalline polyethylene, compared to the vibration-only, com- 
puted Cp. Shaded area indicates the Cp-contribution of large-amplitude motion 

often tedious and suffers from accuracy problems. A neural network program 
was recently prepared to simplify the task [11]. Although it gives improved re- 
suits and seems independent of personal judgement, it is not sufficiently 
transparent to safely interpret the obtained O-temperatures. In the present paper 
a new method is described that involves a direct least-squares fitting method 
with interpolation that can optimize the two parameters of the Tarasov function, 
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| and | For testing purposes, several representative polymers, for which low 
temperature data of heat capacity at constant pressure, Co, exist, were selected. 
In addition, three sets of computed Cp data from assumed frequency spectra 
were analyzed. For every set of data, one, and only one, pair O~ and 03 for the 
Tarasov function representing the skeletal vibrational contribution to the heat 
capacity are obtained by this new optimization method together with the error 
in C-p of the best fit. The method can be applied to all polymers of the ATHAS 
data bank and should lead to an improved set of correlations. 

Heat capacity theory 

The historical perspective of heat capacities for idealized models is well known 
and will not be discussed here [12]. For macromolecules, it has been found that 
group vibrations contribute little to low temperature heat capacities at constant 
volume, Cv, and are well approximated using a summation of Einstein functions 
[13], which are given in units of NR by: 

C.,/NR = E(| : (|174 
[exp(| 1] z 

(1) 

where R is the gas constant and N, the number of vibrators. For the skeletal vi- 
brations, it has been found that their heat capacity contribution can be approxi- 
mated by a combination of Debye functions. The one, two and three- 
dimensional Debye functions Da, Dz and D3 are given by: 

- ( e , / T )  

Cv/NR : DI(| : ( T/| ~ !|174174 
o Lexpt~/l)-  II 

(2) 

(O~//3 

Cv/NR : D2(| : 2(T/Oz) z I (|174 d(| 
o [exp(O/T)- 1] 

(3) 

(OdT) 

C,,/NR : D3(| : 3(T/| 3 ! [exp(O/(|174 - 1] (4) 

respectively. The Debye function DI(| is based on a constant frequency dis- 
tribution, D2(OJT) on a linear distribution, and D3(O3/T) on a quadratic distri- 
bution. The parameters | 02 and O3 are the characteristic upper frequencies 
for these approximations to the density of vibrational states and represent hv/k, 
where h is Plank's constant and k is Boltzmann's constant (1 K=0.695 cm-~). 

J. Thermal Anal., 47, 1996 



ZHANG, WUNDERLICH: TARASOV FUNCTIONS 903 

Using a combination of Eqs (2) and (4) to approximate the skeletal heat capaci- 
ties of macromolecules, Tarasov has proposed the form [1]: 

Cv/NR = T((31/T,| = D1((31/7) - ( ( 3 3 / ( ~ l ) [ D I ( ( 3 3 / T )  - D3((33/T)]  (5)  

to model the function Cv(T). We have successfully used this approach in the 
ATHAS for a variety of polymer systems. It turns out, however, that the inver- 
sion of C, vs. Tto (31 and (33 is not trivial and requires a complex procedure. In 
this paper, a straight-forward, least-squares fitting method with interpolation is 
presented. 

Calculations 

The ATHAS computation scheme is briefly explained as follows: The vibra- 
tional spectra of solid polymers are separated into group and skeletal vibratons 
(N= number of atoms x3 =N~ +N g). The number and types of group vibrations, 
Ng, are derived by inspection of the chemical structure, and are then repre- 
sented by a series of single frequencies and/or box-distributions over narrow 
frequency ranges. These frequencies can be taken from normal-mode calcula- 
tions on isolated chains that are fitted to experimental IR and Raman 
frequencies of the macromolecule or suitable low molecular mass analogs. The 
remaining number of skeletal vibrations, N~, are not well represented by pres- 
ent-day normal-mode calculations, but can be approximated for linear 
molecules by fitting the experimental, low-temperature skeletal heat capacities 
to the Tarasov function with two parameters, | and (33. Most sensitive in the 
t00-300 K temperature region, the parameter | governs the contributions of a 
constant frequency distribution (box), largely representative of the intramolecu- 
tar vibrations; while most sensitive in the 0-50 K governs region, (93 does the 
same for a quadratic frequency distribution, largely representative of the inter- 
molecular chain vibrations [10, 14]. Prior to each fitting, the measured Cp is 
converted to Cv and the computed group vibrational contribution is subtracted, 
leaving the experimental skeletal component to be represented by the Tarasov 
function (Fig. 1, left). The resulting approximate vibrational spectrum, consist- 
ing of group and skeletal vibrations (the -latter defined by the optimized (31 and 
| is then inverted back to give the computed heat capacities at constant vol- 
ume Cv (Fig. 1, right). To convert the experimental Cp to ~ ,  and vice versa, 
one can use the well-known thermodynamic relationship. Since expansivity and 
compressibility are, however, not known for most of the polymers, one needs to 
use the modified Nernst-Lindemann approximation that was proven applicable 
for polymers [15]: 

Cp - C, = 3RAo( CoT/Tm ~ (6) 
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where Ao is an approximate universal constant [3.9x10 -3 (K mol)J-l], and T ~ re- 
fers to the equilibrium melting temperature. The difference between Cp and C,, 
decreases rapidly with temperature, so that below 60 K its contribution to the 
heat capacity is less than 1.0% for most polymers and Cp could be used directly 
for the evaluation of (91 and (93 [10]. 

The new least-squares optimization method for obtaining 001 and O3 of the 
Tarasov function is, in fact, conceptually very simple. Briefly, an appropriate 
merit function that describes the goodness of fit is optimized (usually mini- 
mized) by adjusting the parameters until all preset fitting criteria are satisfied. 
In this work, the root mean square (rms) error, A, between the experimental 
(Cexp) and calculated (Cc,lc) heat capacities is chosen to be the merit function. 
Then A is optimized for the least value by varying the two Tarasov parameters, 
O1 and 003. The best fit and corresponding 001 and (93 are thus determined 
through this least-squares fitting procedure and A is computed for N data points. 
The relative rms error is given by: 

' N ' 2 

3" - Cox: ool 

N 
(7) 

Since the Tarasov function is not only nonlinear, but contains also several in- 
tegrations of nonclosed form, common least squares optimization algorithms do 
not apply well in fitting for 001 and (93. An alternative is to go back to the primi- 
tive approach of locating the minimum of the least squares by making a com- 
plete survey of the parameter domain space. First the possible range of values 
for 001 and (93 are divided into m and n equal parts, respectively. The two-di- 
mensional parameter space is thereby separated into m x n  cells. Equal numbers 
of steps are used in our case to simplify the computation (m=n). A complete 
survey means we have to first calculate the value of A at every grid point (001, 
003). By comparing all the values obtained, the least or first order minimum of 
A can be located. The actual computer program is constructed based on a standard 
algorithm, often used for energy minimization in physics [16]. 

With information provided by our ATHAS data bank, a 20 by 20 mesh is se- 
lected in the two-dimensional parameter domain space, with 001 from 200 to 
960 K in step of 40 K, and (93 from 10 to 200 K in steps of 10 K. The 400 grid 
points made of the sets of (001, (gs) are then evaluted for their fit to the heat ca- 
pacity. The output for each (001,003) is the rms error A of Eq. (7) from the com- 
parison with the heat capacities over the complete temperature range of 
available data or data of interest. Both absolute or relative errors can be used as 
fitting criteria. The latter case is shown in Eq. (7) and is used for this study. 
The mesh is therefore evaluated for the r m s  error 5, of fitting the experimental 
Cp to the Tarasov function. 
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The least among all A values and its corresponding (| 03) are the best fit 
if the test data sets are sufficient for the fitting criteria. Usually this condition 
cannot be met due to consideration of efficiency, computer time and storage 
space limitation. The accuracy of such an approach is then limited by the number 
of subdivisions we can take for each parameter. Furthermore, the amount of 
computation and storage requirement can be large, even for modest values m and 
n. It is, thus, not practical to evaluate all possible combinations of 01 and | 
even if a recursive searching scheme with ever finer grid spacing is utilized. As 
remedies, it is possible to modify the method into an interactive search, instead 
of the fixed grid, or to combine it with a fine-search, using a direct interpola- 
tion around the first-order minimum of A reached at a grid point. The approach 
using the direct interpolation is best suited to our problem. To proceed, the 
mesh point with the least fitting error is identified together with its neighboring 
points. A standard interpolation method is then employed to estimate the global 
minimum between the mesh points. Integration of all relevant functions is per- 
formed by the subroutine D01AHF based on the Patterson method [17] listed in 
the Fortran Math Library of the Numerical Algorithm Group (NAG) [ 18]. Typi- 
cal running times for fitting the data for one polymer are less then one-half min- 
ute on a typical mainframe VAX 6000-440 computer. 

Results 

The representative polymers and small molecules chosen for analysis were 
polyethylene (PE), poly(propylene) (PP), polytetrafluoroethylene (PTFE), 
poly(vinyl chloride) (PVC.), polystyrene (PS), poly(oxymethylene) (POM), 
poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate) (PET), pro- 
pane, polymethionine (PMET), polyphenylalanine (PPHE), bovine zinc insulin 
dimer, and bovine chymotripsinogen A. The data selected referred either the 
crystalline or amorphous solid states, or, when available, both crystal and glass 
were analyzed. The poly(amino acid) and the protein heat capacities refer to an- 
hydrous samples. Three sets of simulated data for polyethylene with computed 
skeletal heat capacity contributions were also included in the analysis. These 
simulated data were the same as used before in the testing of the neural network 
method for the prediction of| and | [1 t]. All chosen examples have low tem- 
perature Cp data available in the ATHAS data bank [2]. 

The results of the fittings are listed in Table 1. The key parameters are | 
| and | where O| is the Debye temperature, obtained by fitting Eq. (4) at 
low temperatures (<50 K). The number of skeletal vibrations Ns, the average 
(av) and root mean square (rms) errors, and the temperature range of fitting are 
also listed in Table 1. For the data sets that were analyzed before by the old es- 
timation method and for the simulated data, the prior known | | and | are 
listed in parentheses. Figures 4-7 show some typical plots of the fittings. 
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Table 1 | and | values of optimization 

Polymer Ns | | ~ | a % av & rms Temp./ 

error b KC 

PE tryst 2 529(519) 160(158) 238(235) 1.1+9.1 1.8-300.0 

PE amorph 2 586(519) 71(80) 143(149) -1.45:5.9 5.0-110.0 

PP eryst 7 719(714) 103(91) 197(181) 0.4:t:3.0 10.0-300.0 

PP amorph 7 643(633) 75(78) 153(157) 0 .2_+-3.7 10.0-260.0 

PTFE tryst 2 276(250) 50(54) 89(90) -1.4.-t:3.8 1.0-250.0 

PVC amorph 4 358(354) 50(45) 97(89) ---0.6+_3.8 5.0-350.0 

PS amorph 6 282(284) 50(48) 90(87) - -0 .4+_4 .8  0.7-300.0 

POM tryst 2 225(232) 119(117) 147(147) - 3 . 4 ~ . 3  2.0-300.0 

PMMA amorph 14 681(680) 87(67) 173(145) 0 . 8 + _ 1 . 9  10.0-300.0 

PET amorph 15 637(586) 43(44) 105(104) -2.5-+6.7 1.2-320.0 

Propane 9 365(360) 131(128) 185(181) -0.6+4.8 15.0-80.0 

PMET 15 542 83 155 -0.5+1.6 5.0-200.0 

PPHE 11 396 67 121 1.4+-.3.5 5.0-300.0 

Insulin 628 599 79 155 0.01+_3.1 10.0-300.0 

Chymotryps. 3005 631 79 158 0.5+_.3.2 10.0-300.0 

Simulation 1 2 447(450) 152(150) 217(216) 0.2+9.2 3.0-300.0 

Simulation 2 2 523(530) 192(190) 268(267) 0.3+9.2 3.0-300.0 

Simulation 3 2 485(490) 111(110) 182(181) 0 . 1 _ + 0 , 7  3.0-300.0 

a The data in parentheses give the old data bank values or the simulation input. 
b Note that these errors refer to the total heat capacity Cp of the skeletal and group vibrations. Any 

error of group vibration assignment and Cp-to-Cv conversion can naturally not be fully eompen 
sated by fitting | and 6)3. 

e Temperature range of the experimental or simulated data used for fitting. 

Discussion 

The first observation is that the new data in Table 1 approach the corre- 
sponding old @ values (in parentheses) available for comparison. The 
simulation data indicate that the method is usually within the typical experimen- 
tal error of 3-5%. In the previous standard ATHAS method, one took an 
average of the G-temperatures obtained by point-by-point inversions in the tem- 
perature region where they appeared reasonably constant. The condition was to 
achieve a constant | over a chosen temperature range [10, 14]. 
Naturally, this choice of best | does not necessary lead to the least 
error in heat capacity. In addition to unavoidable subjective choices affecting 
the results, the entire process is often lengthy and time consuming. The new op- 
timization method, as shown in Figs 4-7, is considerably more efficient since 
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both | and | are obtained in a single run and the fitting is directly linked to 
the error in Cv, where the percentage least-squares error of all data in the cho- 
sen temperature interval is calculated. 

The plots in Figs 4-7 prove also the physical relevance of the two-parameter 
description. There is one and only one pair of optimal | Furthermore, 
the new method is inherently transparent, robust, objective, and easy to learn 
and use. Considering the accuracy, the final interpolation of the new method gives 
an estimated precision of one quarter of the spacing between neighboring grid 
points in the mesh. Hence it should not exceed 10 K for | and 3 K for | The 
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Fig. 7 Contour map of the fitting of the experimental, skeletal heat capacity to a Tarasov 
function with parameters | and | for PET, amorphous 

experimental error usually associated with heat capacity measurement pre- 
cludes the need for more precise theoretical parameters. 

As a check of the results presented in this paper, one can look also at the 
connection between the old and new fitting scheme through the parameter | 
which is | of the 3-dimensional Debye function D3 [Eq. (4)]. At very low tem- 
perature, both D3 [Eq. (4)] and the Tarasov function Eq. (5) approach the 
well-known T3-dependence of the heat capacity and, therefore, yield the same 
values for C,. In other words, in the low temperature limit the following equa- 
tion holds for Eqs (4) and (5) [10]: 
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Cv/NR ~ (~-~I (-~D~3 ~ f4~4--1I-~312 (~ll 

which can be simplified to: 

(8) 

| = |  (9) 

The | values presented in Table 1 were computed using Eq. (9). They corre- 
spond accurately to the values found before by direct fitting at very low tem- 
perature. 

The comparison between the new least-squares and the neural-network 
method is made by simply recalculating the simulated data used by Noid et  al. 
[11]. The three sets of simulated Cv and one of experimental Cp for crystalline 
PE [6] that were used in the neural network inversion to | and | were also 
used in the current procedure and the new results are listed in Table 1. In all 
cases, similarly precise | and | were obtained as by the neural network meth- 
ods (518.8, 156.9 for PE; 450.4, 148.6 for Sire. 1; 529.7, 191.0 for Sim. 2; 
and 489.4, 108.5 for Sim. 3). However, the real improvement lies in the fact 
that no rigid restriction on the type of polymers and the regularity, distribution 
and number of Cp data is necessary for the new method. The main advantage of 
the least-squares method is the simple conception and transparent calculation 
process towards any data set, whereas the neural network works more or less 
like a black box. Although promising as other neural network applications, the 
inversion of the Tarasov equation shares a few recognized, common problems 
as well. The undesirable lack of generalization and over-memorization often 
limits the method to polymers related to the training sets [19]. Whereas the new 
method, irrespective of the number of input data point, applies to any polymer 
or other solid state material. Despite the differences, there is one similarity be- 
tween the two approaches, i.e., both utilize minimization algorithms to reach 
either the optimal parameters directly as in case of the new method, or the 
weight configuration for the neural network. 

With the current method both the absolute and relative rms error can be used 
as criteria for the evaluation of the fitting quality. Adhering to different physical 
quantities, either choice usually yields very good | and | values according to 
preliminary tests. But, it remains to establish the changes in | if abso- 
lute errors are used instead of percentage errors. The absolute errors would be 
of advantage for the optimization of the integral properties (H, S and G), while 
the percentage error is useful for the assessment of the heat capacity as a func- 
tion of temperature. 

The largest sensitivity in the | inversion is at the point of inflection of 
the Tarasov function, at about | to | [20]. For a | of 460 to 550 K one 
expects highest accuracy at about i00 K, still somewhat below the usual experi- 

J. Thermal Anal., 47, 1996 



910 ZHANG, WUNDERLICH: TARASOV FUNCTIONS 

mental temperature range. At higher temperatures the sensitivity of the inver- 
sion decreases and approaches zero above the O-temperature as Cv approaches 
Ns • (Dulong-Petit's rule). It is therefore essential for an accurate Cp to | 
perature inversion to include as many low temperature data as possible. The 
data tables and corresponding curves, as well as tables of the computed Cp and 
the recommended experimental Cp for the selected polymers can be inspected 
and reproduced from the ATHAS data bank, increasingly available through the 
World Wide Web on the Internet [2]. 

Conc lus ions  

We have presented a new method for extracting the | and | parameters in 
the Tarasov equation for modeling the temperature-dependence of Cv for the 
solid state macromolecules. This technique was demonstrated to lead to an ac- 
curacy of about 10 K for | and 3 K for | which is an improvement over prior 
methods. More importantly, we have successfully complemented the ATHAS 
analysis framework with a fitting procedure of more systematic precision that 
facilitates the systematic study of the physical significance of | and | values 
over the entire ATHAS data bank. Using the theory-backed heat capacities, it is 
possible to arrive at a better knowledge of broad range transitions which are 
common in macromolecules. The variation of the | temperatures from polymer 
to polymer is correlated so that, in case of missing data, first approximations 
can be estimated from the extensive tabulation in the ATHAS data bank. 
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